The scaled boundary finite element method applied to electromagnetic field problems
نویسندگان
چکیده
Computation electromagnetic is an important research field of electromagnetic fields and microwave technology subjects. In this paper, the scaled boundary finite element method (SBFEM) is extended to solve one type of electromagnetic field problems-electrostatic field problems. Based on Laplace equation of electrostatic field, the derivations and solutions of SBFEM equations for both bounded and unbounded domain problems are expressed in details, and the solution for the inclusion of prescribed potential along the side-faces of bounded domain is also presented in details, then the total charges on the side-faces can be semianalytically solved. The accuracy and efficiency of the method are illustrated by numerical examples of electromagnetic field problems with complicated field domains, potential singularities, inhomogeneous media and open boundaries. In comparison with analytic solution method and other numerical methods, the results show that the present method has strong ability to resolve potential field singularities analytically by choosing the scaling centre at the singular point, has the inherent advantage of solving the open boundary problems without truncation boundary condition, has efficient application to the problems with inhomogeneous media by placing the scaling centre in the bi-material interfaces, and produces more accurate solution than conventional numerical methods with far less number of degrees of freedom. The method in electromagnetic field calculation can have broad application prospects.
منابع مشابه
A novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کامل